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ABSTRACT 
  
Engineering the surface functional groups of silica aerogels has resulted in greatly 

enhanced separation capabilities. This approach is used to design a material that is 

effective at reducing the dissolved organic components of produced water. This study 

reports the initial results of removing dissolved hydrophobic organics using a 

hydrophobic (CH2CH2CF3) surface group on the silica aerogel. The 30% by wt 

formulation CF3-aerogel was able to adsorb dissolved organic species with log Kow > 2.0, 

with adsorption affinity increasing with increasing log Kow. Seawater salinities did not 

have a large affect on the adsorption of aromatic compounds. Most dissolved aromatics 

and organic acids with the same log Kow that were tested had differing affinities for the 

CF3-aerogel, with the aromatics affinity being greater. These results show the utility of 

modifying the aerogel surface hydrophobicity for absorbing hydrophobic dissolved 

organic compounds.   

 
INTRODUCTION 

   
Offshore oil exploration and production generates far more liquid waste than crude oil 

recovered. Environmental concerns and government regulations related to the disposal of 

produced water often limit its ability to be directly discharged into the surrounding 

environment. As a result, dealing with produced water is costly, as the water must be 

fully treated on the drilling platform for local discharge, reinjected into the reservoir, or 

shipped to the mainland for treatment and/or disposal.[1-2]

Produced waters are complex mixtures of free oil with dissolved organics and 

inorganics that have the potential to impact the local environment. Current on-site 
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treatment methods are able to remove much of the free oil, but are insufficient in most 

cases for the removal of dissolved organics in order for drilling platforms to discharge 

locally. Thus, new treatment approaches that can economically address both free and 

dissolved organic phases both in practical time and space requirements would result in 

significant cost savings and easier waste disposal over current handling and treatment 

options.[2]

 Free oil is conventionally removed from produced water using skimmer vessels, 

plate separators, gas floatation systems, and static hydrocyclones, but these systems have 

limited effectiveness for dissolved species. A new generation of technologies is able to 

provide a more complete waste treatment through gas strippers, biotreatment, adsorption, 

wet air oxidation, and membrane separation. These systems each vary in cost, rate of 

waste treatment, space required, and ease of use. From these new approaches, membrane 

technology and adsorption appear to be most feasible and adaptable to full-scale 

application. Current systems for dissolved organics removal via adsorption employ 

activated charcoal because of its widely utilized adsorption capability and capacity. Still, 

given the limited variety of surface functional groups, activated charcoal alone is unable 

to adsorb all of the targeted dissolved organics from produced water. As an alternative, 

new materials are being developed that are engineered with surface functional groups that 

target specific organics or compound classes and thus improve overall treatment 

efficiency.[3]

 This paper reports the first attempts at modifying the surface functional groups of 

silica aerogels to remove dissolved organics from production water. Silica aerogels are 

generally derived from sol-gels and have open foam-like structures yielding nano-

structured materials with high surface areas and high porosities. As an initial attempt to 

remove dissolved organics, the surface functional groups have been altered to have 

hydrophobic –CH2CH2CF3 end members. Previous work[4] has demonstrated these 

functional groups have high affinity for the free oil phase of produced water and are 

readily recyclable following extraction of adsorbed organics. In this study, the ability if –

CH2CH2CF3 surface functional groups to remove dissolved organics found in produced 

water has been characterized. Silica aerogels can be engineered with numerous types of 

functional groups, so as to ultimately remove different classes of dissolved organics. As a 
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result, this material can be synthesized to have greater porosity and surface area than 

activated charcoal with surface functional groups engineered to remove a greater variety 

of the targeted dissolved organics. 

 
Composition Of Produced Waters 

  
The chemical composition of production water varies greatly from field to field.  As a 

result, an average composition is difficult to define. There is typically a wide variability 

in the concentration of organics in production water at different locations, as it is affected 

by variables such as crude oil contact, temperature and salinity. In addition, production 

additives, that are usually complex proprietary formulations, are added to aid in the 

exploration and production process. Thus, the major dissolved organic constituents can 

generally be separated into a few components; 1) aromatics, 2) organic acids, 3) 

corrosion and scale inhibitors, 4) demulsifiers and defoamers, and 5) biocides. The major 

aromatics found in produced water are benzene, toluene, ethylbenezene, xylenes, 

napthalenes, and phenols, and typical concentrations reported from oil fields from various 

locations are shown in Table 1. Fatty acids that have been reported in produced water 

range from C1 to C9, and reported concentrations are also shown in Table 1. Although 

there are methods for measuring production additives,[8-11] little data is available about 

specific compounds and concentrations of corrosion and scale inhibitors, demulsifiers 

and defoamers, and biocides in produced water. Thus, engineering treatment methods to 

remove these components can only be done in collaboration with industrial partners. 

Although not investigated here, ultimately these additives may be the most important 

component of produced water to remove, as the toxicity of the compounds is generally 

poorly characterized. 

 
MATERIALS AND METHODS 

 
Materials 

  

For aerogel synthesis, 3,3,3-trifluoropropyl-trimethoxysilane and tetramethoxysilane 

were purchased from Gelest Inc. Methanol and ammonium hydroxide were purchased 

from Aldrich Chemicals. 
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 Benzene (>99%), Propanoic Acid  (99%), Pentanoic Acid (99%), and Heptanoic 

Acid (99%) were purchased from Sigma Chemical Co. Phenol (99+%), Hexanoic Acid 

(99.5+%), Octanoic Acid (99.5+%), and Nonanoic Acid (96%) were purchased from 

Aldrich Chemicals. Xylenes (99%) was purchased from Baker Scientific. Toluene 

(99.8%) was purchased from Fisher Scientific. Naphthalene was purchased from Eastman 

Kodak. Glacial Acetic Acid (99.7%) was purchased from EM Scientific. Salt water (3%) 

for simulating seawater salinity was made with NaCl (100.0%) from Mallinkrodt Baker 

Inc. and Milli-Q water. 

 

Methods 

 

The synthesis of the 30% by wt CF3-hydrophobic silica aerogel has been described 

previously.[12-13] In general, the hydrophobic aerogels were made by sol-gel processing a 

fluoro-propyl containing alkoxide, CF3CH2CH2Si(OCH3)3, with tetramethoxysilane, 

(CH3O)4Si. Methanol, water, and ammonium hydroxide are added and poured in to 

molds. After gelation, the gels are exchanged and dried under CO2 or supercritical 

methanol in an autoclave at 13°C/5.5 MPa and 300oC/12.2 MPa pressure, respectively.  

 In order to determine the affinity of the hydrophobic aerogel for the dissolved 

organics, batch adsorption experiments were perform in silanized 5 mL glass vials with 

gas tight septa seal caps. Initially, hydrophobic aerogel was weighted and transferred into 

the glass vial. Milli-Q water was added to the final volume desired less the volume to be 

added during addition of the compound of interest. Volatile compounds were transferred 

into the sealed vial through a septa cap using gas tight syringes to prevent compound loss, 

whereas organic acids were added directly into the vial before sealing. Vials were mixed 

for 2 minutes using a vortex mixer. Concentrations of dissolved compounds were varied 

for constant aerogel mass as well as varying aerogel mass for constant dissolved organics 

concentration. The affinity of the hydrophobic aerogel for each aromatic compound was 

done individually, quantifying the change in dissolved concentration using a HP 8453 

UV-Vis spectrophotometer at 200-220 nm calibrated to known standards for each 

compound. The affinity of the hydrophobic aerogel for the organic acids was performed 

as a mix of acids and quantified using 1 uL aqueous injections of filtered solutions into a 
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HP 5890 GC-FID with a Nukol, 15 m x 0.53 mm ID, 0.50 µm film column (Supelco). 

The oven temperature was ramped from 100oC to 200oC at 10oC/min with one minute 

temperature holds at the beginning and end of the run such that the total run time was 12 

min and the helium flow was ~ 15 mL/min.  

 
RESULTS 

  
The CF3-aerogel used in this study has been characterized and discussed in detail 

previously.[12-14]  Spectroscopic and elemental analyses verifies the CH2CH2CF3 group is 

incorporated into the silica framework somehow.  The formulation used here was also 

found to absorb only 2.5 wt % water (in a water saturated atmosphere) over a period of 

2+ months indicating the aerogel is highly hydrophobic.[15]   

The efficiency of hydrophobic aerogels with –CH2CH2CF3 functional groups to 

remove dissolved organics can be determined by measuring the adsorption affinity. 

Figure 1 shows the adsorption affinity of the CF3-hydrophobic aerogel towards dissolved 

aromatic compounds. The isotherms are fairly linear for each of the aromatic compounds. 

Xylene and naphthalene have the greatest affinity for the hydrophobic aerogel, toluene 

and benzene have an intermediate affinity, and phenol has virtually no affinity. The 

relative affinities follow the octanol-water partitioning coefficients for each of the 

compounds (Table 1), with the compounds with the greatest log Kow also having the 

highest affinity for the hydrophobic aerogel. This indicates that the removal of dissolved 

organics is purely due to the hydrophobic affinity of the dissolved organics to the aerogel.  

 Figure 2 compares the absorption isotherms measured for toluene and xylene 

measured in simulated seawater (3 wt % NaCl) to the absorption isotherms in deionized 

H2O.  The NaCl may cause a slight reduction for xylene absorption but none for the 

toluene absorption. 

 The affinity of the organic acids for the hydrophobic aerogel is shown in Figure 3. 

The isotherms have more scatter than with the aromatic compounds, but still exhibit 

isotherms that are generally linear at the concentration range investigated. As with the 

aromatic compounds, the organic acids with the greatest log Kow (Table 2) also had the 

highest affinity for the hydrophobic aerogel. In addition, compounds with log Kow < 2.0 
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demonstrated no affinity for hydrophobic aerogel, which is also similar to the results 

from the aromatic compounds. 

 The hydrophobicity of the CF3-aerogel appears to control the removal of some of 

the dissolved organics. Figure 4 plots the Kow vs. the adsorption affinity (slope of the 

adsorption isotherm). For compounds with log Kow > 2.0, the affinity for the aromatic 

compounds appears greater than for the organic acids, with the difference in affinity 

becoming more pronounce at higher log Kow values.  This may be a result of overriding 

complex surface interactions (discussed below).  Nonetheless, this relationship between 

partitioning coefficient and removal efficiency provides some ability to predict the 

removal efficiency for dissolved organic components similar to those measured. 

 
DISCUSSION 

  
Although –CH2CH2CF3 is a hydrophobic functional group, its current formulation 

has demonstrated a limited ability to remove hydrophobic compounds. Compounds with 

log Kow >1 and <2 would be expected to have some affinity for a hydrophobic surface 

site, but none was removed. In order to increase the hydrophobicity of the aerogel the 

number of –CH2CH2CF3 sites can be increased or a more hydrophobic surface functional 

group may be used. Future work intends to investigate these methods of increasing the 

hydrophobicity of the silica aerogel and thus, enhance the removal of highly hydrophobic 

compounds already removed and enable the removal of moderately hydrophobic 

compounds currently left untreated. 

In the formulation for the hydrophobic aerogel used in these experiments, the 

molar ratio of the CF3 to silica backbone is 0.35 (by formulation).  This indicates, if all 

the CH2CH2CF3 group is incorporated, that one in every four Si sites are being utilized 

for hydrophobic absorption.  Depending how the aerogel is prepared, the remaining sites 

may be capped with a variety of groups, such as hydroxyl or methoxy.  In this 

preparation, the other sites are probably Si-OH with associated water, resulting in some 

partial hydrophilic character as well as hydrophobic character to the surface.  This may 

enhance organic acid over aromatic absorption.  Because the absorption affinity is higher 

towards the aromatics suggests other factors, such as steric effects may have an important 

role the adsorption process. 
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In some preliminary experiments to be reported elsewhere, three different 

formulations of CF3-aerogels where the non-CF3 surface groups were hydroxyl, methoxy, 

or CH2CH2NH2, were used to adsorb xylenes.  In all three cases, the similar absorption 

isotherms were observed as seen in Figure 1.  Thus, the functionality of these non-

hydrophobic sites do not appear to interfere with the affinity of dissolved hydrophobic 

compounds for hydrophobic CF3 surface functional groups. As a result, additional sites 

for surface adsorption can be engineered with functional groups that remove dissolved 

organics not removed using hydrophobic affinities. Future work intends to investigate the 

use of polar surface functional groups in combination with hydrophobic surface 

functional groups to remove dissolved organics that are either hydrophobic or 

hydrophilic.  

 
SUMMARY 

 
The role of hydrophobic aerogels specifically engineered for the treatment of 

produced water may result in a completely new approach in waste treatment. The 

configuration and costs of such a treatment process have not yet been determined. This 

new material has the potential to be used as the only adsorption required, or it may be 

more efficient to use such materials as a waste polishing step after conventional methods. 

The ability to engineer functional groups on this material results in an enormous array of 

potential applications for efficient and targeted separations that have just begun to be 

examined.  

 
ACKNOWLEDGMENTS 

 
This work was performed under the auspices of the U.S. Department of Energy by 

University of California, Lawrence Livermore National Laboratory under Contract W-

7405-Eng-48. Thanks to Kenneth G. Foster and Paul R. Coronado of LLNL for help with 

aerogel synthesis.  

 
REFERENCES 

 
1.  Stephenson, M.T. Components of Produced Water: A compilation of industry studies. 

Journal of Petroleum Technology 1992, 44(5), 548-603. 

 7



2. Waldie, B.; Harris, W.K. Removal of Dissolved Aromatics From Water: Comparison 
of a High Intensity contactor with a Packed Column. Chemical Engineering Research 
& Design 1998,76(A5), 562-570. 

3. Coleman, S.J.; Coronado, P.R.; Maxwell, R.S.; Reynolds, J.G. Granulated Activated 
Carbon with Hydrophobic Silica Aerogel: Potential composite materials for the 
removal of uranium from aqueous solutions. Environmental Science & Technology 
2003, 37(10), 2286-2290. 

4. Reynolds, J.G.; Coronado, P.R.; Hrubesh, L.W.  Hydrophobic Aerogels for Oil-Spill 
Clean-up: Intrinsic Absorbing Properties. Energy Sources 2001, 23 (9), 831-843. 

5. Somerville, H.J.; Bennett D.; Davenport J.N.; Holt M.S.; Lynes A.; Mahieu A.; 
Mccourt B.; Parker J.G.; Stephenson R.R.; Watkinson R.J. Wilkinson T.G. 
Environmental-effect of produced water from north-sea-oil operations. Marine 
Pollution Bulletin 1987, 18(10), 549-558. 

6. Hansen, B.R.; Davies, S.R.H.  Review Of Potential Technologies For The Removal 
Of Dissolved Components From Produced Water. Chemical Engineering Research & 
Design 1994, 72(A2), 176-188. 

7. Utvik, T.I.R. Chemical Characterization of Produced Water From Four Offshore Oil 
Production Platforms in the North Sea. Chemosphere 1999, 39(15), 2593-2606. 

8. Beazley, P.M. Quantitative Determination of Partially Hydrolyzed Polyacrylamide 
Polymers in Oil Field Production Water. Analytical Chemistry 1985, 57(11), 2098-
2101. 

9. Grigson, S.J.; Wilkinson, A.; Johnson, P.; Moffat, C.F.; McIntosh, A.D. Measurement 
of Oilfield Chemical Residues in Produced Water Discharges and Marine Sediments. 
Rapid Communications in Mass Spectrometry 2000, 14 (23), 2210-2219. 

10. McCormack, P.; Jones, P.; Rowland, S.J.  Liquid Chromatography/Electrospray 
Ionization Mass Spectrometric Investigation of Imidazoline Corrosion Inhibitors in 
Crude Oil. Rapid Communication in Mass Spectrometry 2002, 16 (7), 705-712. 

11. Roussis, S.G.; Fedora, J.W. Quantitative Determination of Polar and Ionic 
Compounds in Petroleum Fractions by Atmospheric Pressure Chemical Ionization 
and Electrospray Ionization Mass Spectrometry. Rapid Communication in Mass 
Spectrometry 2002, 16 (13), 1295-1303. 

12. Hrubesh, L.W.; Coronado, P.R.; Satcher Jr., J.H. Solvent Removal from Water with 
Hydrophobic Aerogels. Journal of Non-Crystalline Solids 2001, 285, 328-332. 

13. Reynolds, J.G.; Coronado, P.R.; Hrubesh, L.W. Hydrophobic Aerogels for Oil-Spill 
Clean-up: Synthesis and Characterization. Journal of Non-Crystalline Solids 2001, 
292, 127-137. 

14. Tillotson, T. M.; Foster, K. G.; Reynolds, J. G. Fluorine induced hydrophobicity in 
silica sol-gels and aerogels, Submitted to J. Non-Cryst. Solids (2003) 

15. Reynolds, J.G.  Hydrophobic Silica Aerogels. Recent Research Developments in 
Non-Crystalline Solids 2001, 1, 133-149. 

 
 
 
 
 

 8



Love, Hanna, and Reynolds 

Table 1 -Aromatic and organic acid compounds in produced water. From Somerville 
(1987),[5] Stephenson (1992),[1] Hansen and Davies (1994),[6] and Utvik (1999)[7]  

Compound Typical mean 
(mg/L) 

Reported Range 
(mg/L) 

Log Kow 

Benzene 1 0.002-9 2.1 
Toluene 2 0.1-5 2.7 

Ethylbenzene 0.4 0.3-0.6 3.2 
Xylenes 0.4 0.2-0.7 3.2 

Naphthalenes 1 0-4 3.3 
Phenols 7 0.5-12 1.5 

Formic Acid 300 30-600 -0.54 
Acetic Acid 700 - -0.17 

Propanoic Acid 60 40-100 0.33 
Butanoic Acid 20 0-50 0.79 
Pentanoic Acid 10 0-30 1.4 
Hexanoic Acid 5 - 1.9 
Heptanoic Acid 3 - 2.4 
Octanoic Acid 3 - 3.1 
Nonanoic Acid 1 - 3.4 
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Figure 1 – Adsorption of dissolved aromatic compounds found in produced water to 
silica aerogel with 30% (by weight) –CH2CH2CF3 surface functional groups. 
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Figure 2 – Adsorption in deionized water and simulated seawater of toluene and xylene 
to silica aerogel with 30% (by weight) –CH2CH2CF3 surface functional groups. 
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Figure 3 – Adsorption of dissolved organic acids found in produced water to silica 
aerogel with 30% (by weight) –CH2CH2CF3 surface functional groups. 
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Figure 4 – Affinity of dissolved organic acids and aromatic compounds to the CF3-
hydrophobic silica aerogel (slope of the linear adsorption isotherm) related to the 
hydrophobicity of the compounds (log Kow). 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 

 

S
lo

pe
 o

f i
so

th
er

m

Log Kow

 organic acid
 aromatic

 13




